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Design and Analysis of Cylindrical Antiresonant
Reflecting Optical Waveguide

C.W. Teeand S. F. Yu, Senior Member, |EEE

Abstract—A field-transfer matrix method is developed to
analyze the modal characteristics of cylindrical multilayered
waveguides with axis-symmetric geometry. A new design rule for
cylindrical antiresonant reflecting optical waveguides (ARROWS),
based on athree-step design process, is also proposed to minimize
the radiation loss of the fundamental leaky mode. In addition,
a simple approach is suggested to estimate the optimum core
diameter of the cylindrical ARROWS for optimum radiation loss
and radiation loss margin. Hence, it can be shown that an extra
high index cladding layer is good enough to reduce the radiation
lossaswell asto maintain a reasonably high radiation loss margin
in simplified ARROWSsfor long wavelength application.

Index Terms—Cylindrical antiresonant reflecting optical wave-
guide, field-transfer matrix theory, leaky modes, radiation loss.

I. INTRODUCTION

ECENTLY, theoretical models have been developed to
analyze the modal characteristics of planar antiresonant
reflecting optical waveguides (ARROWS) [1]-{4]. How-
ever, further extension of these methods to study cylindrical
ARROW has not been reported except the use of finite-differ-
encetime-domain (FDTD) method [5]. Although thefull-vector
FDTD method is exact, it requires great computational time
and memory for the simulation. Hence, planar approximation
is often used to estimate the modal characteristics of cylindrical
ARROW vertical cavity surface emitting lasers (VCSELS)
[6]. However, the radiation loss margin (i.e., the difference
in radiation losses between the fundamental and first order
leaky modes) of the cylindrical ARROW may be overestimated
by the planar approximation. This is because the radiation
loss of the first-order leaky mode calculated from the planar
approximation is much higher than that obtained from the exact
calculation (see Section 11-B for more explanation). Therefore,
it is necessary to deduce a more exact and effective method to
analyze the modal characteristics of cylindrical ARROWS.
Inthe design of ARROW VCSELs, thedesign rule of aplanar
ARROW is employed to estimate the corresponding optimum
thickness of the first cladding layer [6]. This is acceptable
because the error that arises from the planar approximation is
small. However, the optimum thickness of the second cladding
layer obtained from the planar approximation can deviate from
the exact solution by more than 1 ;xm [7]. This is because the
leaky modes inside the cylindrical ARROW, which satisfiesthe
Helmholtz equation in polar coordinates, have the properties
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of Bessal functions. Hence, the nonuniform periodicity (i.e.,
the periods of the leaky modes in the core and second cladding
layers are different; see Section I1-C for more explanation)
of the leaky modes violates the assumption of the design rule
(i.e., requirement of constant lateral wavelength throughout the
cavity). Hence, a new design rule is required to be developed
for cylindrical ARROW.

Furthermore, the design of ARROW V CSEL srequiresthede-
vicesto have 1) high output power (i.e., large core diameter), 2)
stable single-mode operation (i.e., large radiation lossmargin) at
high power, and 3) low threshold current (i.e., low radiation loss
of the fundamental leaky mode). However, the available design
of ARROW may not be suitable for long wavelength application
asthe corresponding radiation lossisvery large. Therefore, itis
also desired to design a new ARROW structure for long wave-
length application.

In this paper, asimplefield-transfer matrix model is proposed
to study the modal characteristics of the cylindrical multilay-
ered waveguides with axis-symmetric geometry. Furthermore, a
new designrule, arigorousthree-step iteration procedure, ispro-
posed to evaluate the optimum thickness of the cladding layers
of any cylindrical ARROW structures. A simpleapproachisalso
suggested to estimate the optimum core diameter of the cylin-
drical ARROW for optimum radiation loss and radiation loss
margin. In addition, SARROW with extra high index cladding
layer is proposed for long wavelength application.

Il. THEORY

In the following paragraphs, a field-transfer matrix model
is developed to study the modal characteristics of the cylin-
drical multilayered waveguides with axis-symmetric geometry.
Hence, the field transfer matrix is applied to study the modal
characteristics of acylindrical ARROW. Furthermore, anew de-
sign rule, a rigorous three-step design process, is proposed to
determine the optimum thickness of the cladding layers of the
cylindrical ARROW for minimum radiation loss.

A. Field-Transfer Matrix Model

Fig. 1 shows a portion of the cylindrical multilayered wave-
guideto be considered in theinvestigation. It isassumed that the
cylindrical multilayered waveguide is divided into N—1 con-
centric rings. Inside the ¢th concentric ring with uniform refrac-
tive index n;, the corresponding lateral optica field +;, which
satisfies the scalar Helmholtz equation in polar coordinate, can
be expressed as [8]

v = A (Bir) + B Y,(Bir) (1)
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Fig. 1. Cross-sectional view of acylindrical multilayered waveguide.

where A; and B; are some arbitrary constantsand J,, and Y,, are
vth order Bessel functions of the first and second kind, respec-
tively. 3; = \/k5(n7 — nZ;) isthelateral propagation constant
of ¢; intheith concentric ring. It isnoted that if ¢; isthe bound
field, then the effective refractive index ng of the cylindrical
waveguide isreal. However, if v); istheleaky field, then n.g is
complex. ko (=2w/A) isthe propagation constant and A is the
free space wavelength. Effective index method is used to de-
rive (1) so that the complicated three-dimensional problem is
reduced to one-dimensional analysis. This approximation may
mi ss some resonant cavity modes but is alegitimate approxima-
tion for a waveguide calculation with polarization restrictions
such as ARROW'’s.

Furthermore, v; along the lateral direction can be expressed
in terms of Hankel functions

i = EFHY (Bir) + E7 H (Bir) )
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where Ef (E[) is the amplitude of the outgoing (incoming)
lateral optical field inside the :th concentric ring and Hb(.l) and
H arevth order Hankel functionsof the first and second kind,
respectively. From (2), ; and d4;/9r can be expressed as a
2 x 2 matrix asshownin (3) at the bottom of the page. Using (3),
afield-transfer matrix, which relatesthe lateral electric fieldsin
thedth and ¢+ 1th concentric rings, can bewritten asshownin (4)
at the bottom of the page. ) at r = 0 and » = r can berelated
by multiplying the field-transfer matrices of all the concentric
rings, that is

{ 1 } { YN }
Iy aWN
ar

where TM; isthe 2 x 2 matrix in (4). Hence, the eigenequation
of the cylindrical waveguide matrix can be deduced from (5)
provided that the appropriate boundary conditions are used.
One of the boundary conditions requires no incoming field
beyond r = »5. Thisimplies (6), as shown at the bottom of
the page. The boundary condition givenin (6), however, cannot
be used to evaluate the required eigenequation of the cylindrical
waveguide. Thisisbecause and 8¢ n /dr aredifferent func-
tions of . This problem can be solved by using the asymptotic
expansions of Hankel functions for large value of r, that is

A L

where j = / — 1. This approximation is always valid because
the condition Snr > v for 0 < v < 3 issatisfied for VCSELs
with large aperture (i.e., » > rn ~ 9 um). Using (7), (6) can be
simplified to
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Fig. 2. Plot of relative absolute value of (10) versus nog(~ nre). The four
approximated roots are labeled as fundamental mode (first root of v = 0),
first-order mode (first root of v = 1), second-order mode (second root of
v = 0), and third-order mode (second root of v = 1). Inset is the refractive
index profile of ARROW.

so that both 5 and 815 /87 can be related by a constant. The
other boundary condition requires dv1 /8r = 0 at + = 0. Using
these boundary conditions, (5) can be simplified to

¥ o ¥
1 N
=||T™; | .
|: 0 :| =0 E |:‘7/3]V¢JV:| r>rN
_ {'011111 tlnm} [ N } )
tmyy  tmg | [ JANYN ||,y
As aresult, the required eigenequation can be expressed as
Nne) = tmag + jOntmos =0 (20

with which the effective refractive indexes of bound or leaky
modes supported by any cylindrical waveguides can be deter-
mined. The eigenvalues of (10) (i.e., the roots of n(n.s) = 0)
can be calculated by varying neg.

B. Example—Modal Characteristics of a Cylindrical ARROW

Fig. 2 shows the schematic of a cylindrical ARROW to be
investigated. The dimensions of the cylindrical ARROW are se-
lected so that the fundamental leaky mode has the minimum
radiation loss. The procedures to calculate n.g and the latera
field profile of the leaky modes by (10) can be summarized as
follows:

1) It is noted that n.g of the leaky modes is complex and

can be expressed as neg = nRe + JN1m, Where ng. and
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niy, are real numbers. If only low-loss leaky modes are
considered inthe analysis, it is possible to assume neg ~
nre. HeNce, the approximated value of n.g for the leaky
modes can be obtained from the minimum points (i.e.,
close to zero) of || versus ng. curve (see aso Fig. 2).

2) The exact value of n.g can be obtained by solving
n{ner) = 0 numerically using nex ~ nre astheinitial
guess. Once n.g is obtained, 5; of al the concentric
rings can be deduced.

3) Theintensity profile of the leaky modes can be cal cul ated

by

Wl = |EFED () + B O G| @)
where Bt = ET (=arbitrary number) is assumed in
thefirst concentric ring. The other amplitudes of the elec-
tric fields in the subsequent concentric rings can also be
evaluated by using the continuity condition of ¢; and its
derivative at all the interfaces. From (3), it can be shown
that the required field transfer matrix can be written as
shown in (12) at the bottom of the page.

Fig. 3(a) plots the intensity profiles of the fundamental and
first-order leaky modes in the cylindrical ARROW. The corre-
sponding magnificationsfor theregionr > 4 pmarealso shown
in Fig. 3(b). It is observed that the fundamental mode vanishes
at positions s and r4 (i.e., nodes). Thisis dueto the destructive
interference between the outgoing and incoming fields at these
locations. Constructive interference of both incoming and out-
going fieldsisalso occurred at the position »3 so that an antinode
isformed. On the other hand, the nodes of the first-order mode
deviate from the positions r» and r,, while the antinode moves
into the second cladding layer. Hence, only the fundamental
leaky mode satisfies the antiresonant condition, and the corre-
sponding radiation loss is minimized.

Fig. 4(a) plots the intensity profile of the fundamental and
first-order leaky modes estimated from the planar approxima-
tion. The corresponding magnificationsfor theregionr > 4 um
are also shown in Fig. 4(b). In the calculation, the optimum
dimensions of the cylindrical ARROW are obtained from the
planar approximation with ro = 4.0,73 = 5.3268, and ry =
9.3268 pm. The profile of the fundamental leaky mode esti-
mated from the planar approximation is similar to that obtained
from our more accurate calculation. As a result, the radiation
loss computed from both methods can be quite close to each
other. However, it is observed that the profiles of the first-order
leaky mode obtained from both methods are quite different. The
magnitude of the antinode of the first-order leaky mode inside
the second cladding layer calculated from the planar approxi-
mation is much higher than that obtained from our field transfer
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Fig. 3. (&) Intensity profiles of fundamental and first-order leaky modes
calculated by transfer matrix method. (b) Magnified view of (a).
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Fig. 4. (@ Intensity profiles of fundamenta and first-order leaky modes
calculated by planar approximation. (b) Magnified view of (a).

matrix method. This is because the envelope of the first-order
leaky mode calculated from the planar approximation is almost
independent on r (i.e., properties of cosine/sine functions) but
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that obtained from our field-transfer matrix method isinversely
proportiona to the square root of + [i.e., properties of Bessel
functions, see (7)]. Astheradiation loss of the first-order leaky
mode is proportional to the magnitude of the field distribution
inside the second cladding layer, the planar approximation will
overestimate the radiation loss of the first-order mode aswell as
the radiation loss margin of the cylindrical ARROW. The cal-
culation of first-order leaky mode given in [6, Fig. 4(b)] shows
that the magnitudes of the antinodes inside the core and second
cladding layer are close to each other. Hence, it is believed that
the planar approximation was used in their design of cylindrical
ARROW.

C. Design Rule of Cylindrical ARROW Using Field-Transfer
Matrix

According to planar approximation, the thickness of the
second cladding layer dx(= r4 — r3) should be equal to the
radius of the core region r» (=d;/2) [6]. This is because
the lateral wavelength of the leaky modes should be uni-
form throughout the ARROW structure (i.e., properties of
cosine/sine functions) in order to obtain antiresonant condition
[see Fig. 4(a)]. Similar antiresonant condition is also observed
in our calculation using field-transfer matrix method, but
the lateral wavelength of the leaky modes inside the second
cladding layer is shorter than that inside the core region [see
Fig. 3(a)]. Thisis again due to the nonuniform periodicity of
Bessel function, as the period of the standing wave within the
core and second cladding layers is equal to 2.403 and 7 /2,
respectively. These correspond to the separation between the
center and first root of Jo(¢) (i.e., between r; and r2) aswell as
the separation between the second root of .J;(¢) and third root
Jo(¢) (i.e., between r5 and r4). Hence, if d;/2 = 4 um, then
d» should be equal to dy = (2.403/7/2)7 x d1/2 = 2.61 um,
whichis closeto our more exact cal culation and is much shorter
than that obtained from the planar approximation. It must be
noted that the error arising from the estimation of d, using
planar approximation will not reduce with the increase of d;.
This is because the ratio between the lateral wavelength inside
the core and second cladding layer of the cylindrical ARROW
is independent of the diameter of the core region, so that the
ratio d,/d; = = /(4 x 2.403) is a constant.

Hence, a new design rule of cylindricad ARROW, which
involves a three-step design process, is proposed. The
three-step design process consists of 1) a rough estima
tion of waveguide dimensions (using the approximation
¥ o J,(fr)), 2) a better iterative approximation method
[using v o AJ,(Br) + BY,(8r) or (2)] and 3) an iterative
process incorporated with field-transfer matrix. The reasons
to go through these lengthy design procedures is because in
cylindrical structure, the analytical expression for optimum
thickness of cladding layers cannot be deduced explicitly [3].
Apart from this, the convergent efficiency of the field-transfer
matrix is dependent on the initial guess of n.g and the wave-
guide dimensions.

If only fundamental leaky modeis considered in the analysis,
the three-step design process can be written as follows.

First, it can be shown that due to the axis-symmetric
properties of the cylindrical ARROW, the corresponding
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Fig. 5. A three-step design process for cylindricall ARROW. The design
process requires the free-space wavelength A, core diameter d,, and refractive
indexes of the four layers (n1, ns, ns, n4) of the ARROW astheinputs. If the
radiation loss of the fundamental leaky mode is high, Step 3) will be executed
using the field-transfer matrix to solve for the exact value of n.;.

field profile of the fundamental leaky mode can be roughly
approximated by the Bessel function of the first kind, that
is, ¢ oc Jo(pr). Using the fact that the optimum dimensions
of the cylindrical ARROW are obtained when the antinode
(nodes) of the fundamental leaky mode is (are) located at
r3 (ro and ry), the analytical expressions for the optimum
dimensions of the ARROW structure can be deduced (see also
Fig. 3). The n.g of the cylindrical ARROW can be estimated
by recognizing the position of node at r, which corresponds to
the first root of Jo(/5r). As aresult, n.r can be approximated
by new = /n? —(0.7655)\/d1)?, where d; = 2r,. Again,
by recognizing the position of antinodes at r3, the thickness
of the first cladding layer s (=rs — r2) can be obtained from
the second root of .J1(3r) (or 8 /dr = 0 at r3). Hence, s can
be expressed as s = 0.7338)\/\/n3 — n’g. It is noted from
Fig. 3 that the field intensity has another node at 4, which
corresponds to the third root of Jo(3r). Therefore, the second
cladding layer thickness d» (=r4s — r3) can be written as
ds = 0.2607\/\/n3 — n’g.

Second, Fig. 5 shows the proposed iteration process used to
deduce s and d of the cylindrical ARROW. In this calculation,
(2) isused to describethelateral field profiles of theleaky modes
and the approximated values of s and d» can be obtained from
Step 1) astheinitial guess of thisiteration process. The purpose
of thisiteration processisto find abetter approximationto s and
ds than that obtained from Step 1) so that the antinode (node)
of the leaky modes calculated from (2) can be accurately posi-
tioned at T3 (7‘4).

For low-loss cylindrical ARROW, the values of s and ds
calculated by the above iteration process can be quite close to
the optimum dimensions, so the use of transfer matrix method
can be bypassed. However, if the radiation losses of the leaky

3383

900
~—— Fundamental
== First order
e Qecond order
L] — Third order

. S-ARROW

A=1.55um

~1
[w
(=]

n,=3.35

n=3.3 n,=3.3

S

- Refractive index

e
(SN
R
[ %]

lateral direction (r)

Radiation Loss (cm?)
‘n
<
<
7":

W
j=3
(=1

1 L5 2 2.5 3 35 4
15t Cladding Layer Thickness, s (1m)

Fig. 6. Radiation losses versus thickness of the first cladding layer s of the
S ARROW. Insert is the refractive index profile of SARROW.

modes are large (e.g., ARROWS operating at |ong wavelength),
the assumption n.g ~ ng. Will not be satisfied anymore.
Therefore, an additional step [i.e.,, Step 3) as shown below]
is required.

Third, the modified iteration process is aso illustrated in
Fig. 5. In the process, the exact value of n.g is calculated
by (10). The convergent efficiency of the iteration process
can be maximized provided that the values of n.g, s, and ds
obtained from Step 2) are used as the initial guess. However,
the magnitudes of the fine-tuning steps 6 and « should be
small enough (i.e., <10~® ;:m) to maintain convergence of the
iteration process if the radiation losses of the leaky modes are
large.

From above, the values of s and d, can be optimized for a
given value of d.

[11. NUMERICAL RESULTS

In the following analysis, the modal characteristics of
S-ARROW and ARROW operating at long wavelength (i.e.,
1.55 ;m) are studied. It is suggested that the optimum value
of dy can be estimated by minimizing the ratio between
the radiation loss of fundamental lesky mode and radiation
loss margin of the waveguides. It is also shown that these
conventional ARROW structures may not be suitable to realize
long-wavelength VVCSEL s due to the high radiation loss of the
fundamental leaky mode. Therefore, it is proposed to introduce
an extra high index cladding layer to SARROW in order to
reduce the radiation loss and to increase the radiation loss
margin.

A. Modal Characteristics of Cylindrical SARROW and
ARROW

Fig. 6 plotstheradiation lossesversusthethicknessof thefirst
cladding layer s for thefour leaky modes (which havethelowest
radiation losses) of SARROW with o (=d;/2) = 4 pm. It
is observed that the shapes of the four curves are similar ex-
cept the values of the radiation losses are different. The fun-
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damental mode has the lowest radiation |oss because it has the
largest (longest) value of ng. (lateral wavelength). Therefore,
the optimum value of s for the fundamental leaky mode is the
longest. The intensity profiles of the fundamental leaky mode
a different values of s are shown in Fig. 7. It is observed that
the maximum (minimum) radiation loss is due to constructive
(destructive) interference or antinode (node) at the interface r-.

Fig. 8 plots (@) the radiation losses of the fundamental and
first-order leaky modes versus d, (b) the optimum thickness
of first cladding layer s versus d;, and (c) the radiation loss
margin versus d; . In the calculation, the value of s is optimized
for the fundamental leaky mode. It is observed that the radiation
losses and radiation loss margin are reduced with theincreasein
dy. On the other hand, the optimum value of s increases along
with d; so that the antiresonant condition of the fundamental
leaky mode can be satisfied. It is noted that larger d; reduces
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the radiation loss of the fundamental leaky mode, but with the
expense of decreasing the high radiation loss margin. Therefore,
it is necessary to deduce an optimum value of d; in order to
maintain the balance between the radiation loss and radiation
loss margin (i.e., to minimize the ratio between the radiation
loss and radiation loss margin). As aresult, the waveguide can
have small enough radiation loss (large enough radiation loss
margin) to minimize the threshold current (suppress the higher
order leaky modes) in VCSELSs. As shown in Fig. 8(a) and (c),
the optimum value of d; can be obtained from the interception
of the interpolations from two straight lines tangentia to the
cuvesat dy = 7 pumand d; = 25 ym. It is found that the
optimum value of d; is around 10 ;m, and the corresponding
values of radiation loss and radiation |oss margin are around 6
and 15 cm™1, respectively.

Fig. 9 plotstheradiation | osses of the four |eaky modesversus
the thickness of the second cladding layer d, of ARROW. In
the calculation, r2 (= d;/2) isagain setto 4 pmand s is opti-
mized for the antiresonant condition of the leaky modes. Fig. 10
shows the intensity profiles of ARROW with different values
of d>. It is observed that the increase in radiation loss is due
to the increase in the magnitude of antinode inside the second
cladding layer (i.e., asindicated by an arrow). The modal char-
acteristics of ARROW with different values of d; are aso in-
vestigated. Fig. 11 plots (@) the radiation losses of the funda-
mental and first-order leaky modes versus ds, (b) the optimum
thickness of first cladding layer s versus dy, (c) the optimum
thickness of the third cladding layer d» versus dy, and (d) the
radiation loss margin versus d;. From Fig. 11(a) and (d), it
is found that the optimum value of d; is about 10 pzm. Fur-
thermore, the corresponding radiation loss and radiation loss
margin are found to be 1.5 and 14 cm~!, respectively. Hence,
it is shown that ARROW has better threshold performance than
that of SSARROW because the radiation loss of the fundamental
leaky mode of ARROW ismuch smaller than that of SSARROW
but the radiation loss margin of ARROW and SARROW issim-
ilarat dy = 10 um.
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Fig. 10. Intensity profiles of the fundamental leaky mode with d, set to
(a) 2.875 um and (b) 5.8 um. Intensity profiles of the first-order leaky modes
with ds set to (c) 1.8 pmand (d) 3.7 pm.
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Fig.11. (&) Theradiationlossof fundamental and first-order mode of ARROW

plotted against core diameter d; . (b) The thickness of the high-index cladding
layers s plotted against d; . (c) Thethickness of second cladding layer d., versus
dy . (d) Radiation loss margin versus d; .

From above analysis, it is noted that ARROW may be a
good choice to redlize long-wavelength VCSELs. However,
for ARROW with d; = 10 um, the corresponding radiation
loss of the fundamental leaky mode is 1.5 cm~!, which is
not small enough to realize high-performance VCSELSs [6].
Although further increase in d; can reduce the radiation loss
of the fundamental leaky mode, the radiation loss margin will
also decrease. Therefore, an extra cladding layer is proposed
to reduce (maintain) the radiation loss (radiation loss margin)
of the SARROW and ARROW. In the following paragraphs,
the modal characteristics of SARROW and ARROW with an
extra high index cladding layer are investigated.

Core (um)

Fig.12. Plotsof radiation loss of fundamental modes (solid line) and radiation
lossmargin (dashed line) of double SARROW versusd, . Insert istherefractive
index profile of the double SARROW.

B. Modal Characteristics of Cylindrical Double SARROW
and Double-ARROW

Fig. 12 shows the schematic of double SSARROW. In the de-
sign of double SSARROW, the thickness of the third cladding
layer so has to be taken into the iteration process. In order to
perform Step 1) of the design rule, the analytical expression of
s2 hasto be deduced for the calculation process. Using the ap-
proximation ¢ o .J,,(3r), ss can be expressed as

5y 07433)‘/\/”421 —nlg .

Using (13), Steps 2) and 3) of the three-step design process
can aso be performed and the optimum thickness of s; can
be evaluated iteratively. In the analysis of the radiation losses
of the double SARROW versus s, the values of s and ds
are optimized for the fundamental leaky mode to achieve
antiresonant condition. The antiresonant condition established
within the first cladding layer is also maintained inside the
third cladding layer of the double SSARROW. Hence, the plots
of s, s2, and dy versus d; are not repeated. Fig. 12 also shows
the variation of radiation loss (of fundamental leaky mode)
and radiation loss margin versus d;. It is observed that the
optimum value of d; is around 10 zm. The corresponding
radiation loss and radiation loss margin are found to be 0.4 and
5.5 cm™*, respectively. It is noted that the fundamental leaky
mode of double SSARROW has much lower radiation loss than
that of ARROW-type structures as described in Section I11-A
and the value of radiation loss margin is still large enough to
discriminate higher order leaky modes in VCSELSs. Please be
noted that in the design of 0.98-;m ARROW-type VCSELS
with d; = 8 pm, the required optimum radiation loss and
radiation loss margin are 1 and 5 cm™1, respectively [6].

Fig. 13 shows the schematic of double ARROW. In the cal-
culation, the thickness of the third cladding layer s., aswell as
thethickness of the fourth cladding layer d3, of double ARROW

(13)
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Fig.13. Plotsof radiation lossof fundamental modes (solid line) and radiation
loss margin (dashed line) of double ARROW versus d; . Insert is the refractive
index profile of the double ARROW.

has to be taken in the iteration process. It can be shown that the
approximated expression of dz can be written as

ds = 0.2558)\/\/71% —nZ.

Using (14), the optimum thickness of d3 can be evaluated iter-
atively. In the study of double ARROW, the values of s, d;, ds,
and s, are optimized for the fundamental 1eaky modeto achieve
antiresonant condition. Hence, antiresonant condition of the
fundamental |eaky mode can be enhanced by the extra cladding
layer, so that the radiation loss of double-ARROW is lower
than that of double SARROW. From Fig. 13, it can be shown
that the optimum d; of doubleeARROW is again 10 ym and
the corresponding radiation loss and radiation loss margin are
found to be 0.04 and 3.5 cm—*, respectively. Hence, it is proven
that extra cladding layer in ARROW can significantly reduce
the radiation loss of the fundamental leaky mode to a very low
value.

(14)

IV. DiscussioN AND CONCLUSION

In the analysis of cylindrical ARROW [6], it is believed that
the planar approximation can be used to estimate the optimum
thickness of the cladding layers. The argument is that if the
ARROW structures have large dy, the corresponding leaky
modes can be approximately described by cosine and sine
functions. This assumption is valid as far as the field profile
of leaky modes far away from the core region are concerned
and this is the reason for us to use (7) to approximate optical
field in the cylindricll ARROW at » > rn. However, using
planar approximation to estimate the optimum dimensions
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of cylindricdl ARROW s still not appropriate. The reasons
have been explained in Section 11-B and -C. This is because
1) the leaky modes have nonuniform latera wavelength and
2) the envelope of the leaky modes reduces along the lateral
direction. On the other hand, the leaky modes describe by
planar approximation assumed that the lateral wavelengths
between the core and second cladding layers are equal in order
to satisfy the antiresonant condition. In addition, the magnitude
of antinodes of the first-order leaky mode inside the second
cladding layer is close to that inside the core region. Therefore,
the use of planar approximation will overestimate the radiation
loss margin of the cylindrical ARROW and the overestimation
cannot be reduced by the increase of core diameter.

In conclusion, a simple field transfer matrix is developed to
analyzethemodal characteristicsof cylindrical ARROW. A new
design rule is proposed to optimize the dimension of the cylin-
drical ARROW. Hence, it is found that the double SARROW
with d; = 10 um isthe best choice to realize long-wavel ength
VCSELSs. This is because the corresponding radiation loss (ra-
diation loss margin) islow (high) enough to minimize threshold
current (suppress higher order leaky modes) of VCSELSs. In
addition, the waveguide structure of double SSARROW is less
complicated than that of double ARROW.
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