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Design and Analysis of Cylindrical Antiresonant
Reflecting Optical Waveguide

C. W. Tee and S. F. Yu, Senior Member, IEEE

Abstract—A field-transfer matrix method is developed to
analyze the modal characteristics of cylindrical multilayered
waveguides with axis-symmetric geometry. A new design rule for
cylindrical antiresonant reflecting optical waveguides (ARROWs),
based on a three-step design process, is also proposed to minimize
the radiation loss of the fundamental leaky mode. In addition,
a simple approach is suggested to estimate the optimum core
diameter of the cylindrical ARROWs for optimum radiation loss
and radiation loss margin. Hence, it can be shown that an extra
high index cladding layer is good enough to reduce the radiation
loss as well as to maintain a reasonably high radiation loss margin
in simplified ARROWs for long wavelength application.

Index Terms—Cylindrical antiresonant reflecting optical wave-
guide, field-transfer matrix theory, leaky modes, radiation loss.

I. INTRODUCTION

RECENTLY, theoretical models have been developed to
analyze the modal characteristics of planar antiresonant

reflecting optical waveguides (ARROWs) [1]–[4]. How-
ever, further extension of these methods to study cylindrical
ARROW has not been reported except the use of finite-differ-
ence time-domain (FDTD) method [5]. Although the full-vector
FDTD method is exact, it requires great computational time
and memory for the simulation. Hence, planar approximation
is often used to estimate the modal characteristics of cylindrical
ARROW vertical cavity surface emitting lasers (VCSELs)
[6]. However, the radiation loss margin (i.e., the difference
in radiation losses between the fundamental and first order
leaky modes) of the cylindrical ARROW may be overestimated
by the planar approximation. This is because the radiation
loss of the first-order leaky mode calculated from the planar
approximation is much higher than that obtained from the exact
calculation (see Section II-B for more explanation). Therefore,
it is necessary to deduce a more exact and effective method to
analyze the modal characteristics of cylindrical ARROWs.

In the design of ARROW VCSELs, the design rule of a planar
ARROW is employed to estimate the corresponding optimum
thickness of the first cladding layer [6]. This is acceptable
because the error that arises from the planar approximation is
small. However, the optimum thickness of the second cladding
layer obtained from the planar approximation can deviate from
the exact solution by more than 1 m [7]. This is because the
leaky modes inside the cylindrical ARROW, which satisfies the
Helmholtz equation in polar coordinates, have the properties
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of Bessel functions. Hence, the nonuniform periodicity (i.e.,
the periods of the leaky modes in the core and second cladding
layers are different; see Section II-C for more explanation)
of the leaky modes violates the assumption of the design rule
(i.e., requirement of constant lateral wavelength throughout the
cavity). Hence, a new design rule is required to be developed
for cylindrical ARROW.

Furthermore, the design of ARROW VCSELs requires the de-
vices to have 1) high output power (i.e., large core diameter), 2)
stable single-mode operation (i.e., large radiation loss margin) at
high power, and 3) low threshold current (i.e., low radiation loss
of the fundamental leaky mode). However, the available design
of ARROW may not be suitable for long wavelength application
as the corresponding radiation loss is very large. Therefore, it is
also desired to design a new ARROW structure for long wave-
length application.

In this paper, a simple field-transfer matrix model is proposed
to study the modal characteristics of the cylindrical multilay-
ered waveguides with axis-symmetric geometry. Furthermore, a
new design rule, a rigorous three-step iteration procedure, is pro-
posed to evaluate the optimum thickness of the cladding layers
of any cylindrical ARROW structures. A simple approach is also
suggested to estimate the optimum core diameter of the cylin-
drical ARROW for optimum radiation loss and radiation loss
margin. In addition, S-ARROW with extra high index cladding
layer is proposed for long wavelength application.

II. THEORY

In the following paragraphs, a field-transfer matrix model
is developed to study the modal characteristics of the cylin-
drical multilayered waveguides with axis-symmetric geometry.
Hence, the field transfer matrix is applied to study the modal
characteristics of a cylindrical ARROW. Furthermore, a new de-
sign rule, a rigorous three-step design process, is proposed to
determine the optimum thickness of the cladding layers of the
cylindrical ARROW for minimum radiation loss.

A. Field-Transfer Matrix Model

Fig. 1 shows a portion of the cylindrical multilayered wave-
guide to be considered in the investigation. It is assumed that the
cylindrical multilayered waveguide is divided into 1 con-
centric rings. Inside the th concentric ring with uniform refrac-
tive index , the corresponding lateral optical field , which
satisfies the scalar Helmholtz equation in polar coordinate, can
be expressed as [8]

(1)
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Fig. 1. Cross-sectional view of a cylindrical multilayered waveguide.

where and are some arbitrary constants and and are
th order Bessel functions of the first and second kind, respec-

tively. is the lateral propagation constant
of in the th concentric ring. It is noted that if is the bound
field, then the effective refractive index of the cylindrical
waveguide is real. However, if is the leaky field, then is
complex. is the propagation constant and is the
free space wavelength. Effective index method is used to de-
rive (1) so that the complicated three-dimensional problem is
reduced to one-dimensional analysis. This approximation may
miss some resonant cavity modes but is a legitimate approxima-
tion for a waveguide calculation with polarization restrictions
such as ARROW’s.

Furthermore, along the lateral direction can be expressed
in terms of Hankel functions

(2)

where is the amplitude of the outgoing (incoming)
lateral optical field inside the th concentric ring and and

are th order Hankel functions of the first and second kind,
respectively. From (2), and can be expressed as a
2 2 matrix as shown in (3) at the bottom of the page. Using (3),
a field-transfer matrix, which relates the lateral electric fields in
the th and 1th concentric rings, can be written as shown in (4)
at the bottom of the page. at and can be related
by multiplying the field-transfer matrices of all the concentric
rings, that is

(5)

where TM is the 2 2 matrix in (4). Hence, the eigenequation
of the cylindrical waveguide matrix can be deduced from (5)
provided that the appropriate boundary conditions are used.

One of the boundary conditions requires no incoming field
beyond . This implies (6), as shown at the bottom of
the page. The boundary condition given in (6), however, cannot
be used to evaluate the required eigenequation of the cylindrical
waveguide. This is because and are different func-
tions of . This problem can be solved by using the asymptotic
expansions of Hankel functions for large value of , that is

(7)

where . This approximation is always valid because
the condition for is satisfied for VCSELs
with large aperture (i.e., m). Using (7), (6) can be
simplified to

(8)

(3)

(4)

(6)
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Fig. 2. Plot of relative absolute value of (10) versus n (� n ). The four
approximated roots are labeled as fundamental mode (first root of v = 0),
first-order mode (first root of v = 1), second-order mode (second root of
v = 0), and third-order mode (second root of v = 1). Inset is the refractive
index profile of ARROW.

so that both and can be related by a constant. The
other boundary condition requires at . Using
these boundary conditions, (5) can be simplified to

(9)

As a result, the required eigenequation can be expressed as

(10)

with which the effective refractive indexes of bound or leaky
modes supported by any cylindrical waveguides can be deter-
mined. The eigenvalues of (10) (i.e., the roots of )
can be calculated by varying .

B. Example—Modal Characteristics of a Cylindrical ARROW

Fig. 2 shows the schematic of a cylindrical ARROW to be
investigated. The dimensions of the cylindrical ARROW are se-
lected so that the fundamental leaky mode has the minimum
radiation loss. The procedures to calculate and the lateral
field profile of the leaky modes by (10) can be summarized as
follows:

1) It is noted that of the leaky modes is complex and
can be expressed as , where and

are real numbers. If only low-loss leaky modes are
considered in the analysis, it is possible to assume

. Hence, the approximated value of for the leaky
modes can be obtained from the minimum points (i.e.,
close to zero) of versus curve (see also Fig. 2).

2) The exact value of can be obtained by solving
numerically using as the initial

guess. Once is obtained, of all the concentric
rings can be deduced.

3) The intensity profile of the leaky modes can be calculated
by

(11)

where is assumed in
the first concentric ring. The other amplitudes of the elec-
tric fields in the subsequent concentric rings can also be
evaluated by using the continuity condition of and its
derivative at all the interfaces. From (3), it can be shown
that the required field transfer matrix can be written as
shown in (12) at the bottom of the page.

Fig. 3(a) plots the intensity profiles of the fundamental and
first-order leaky modes in the cylindrical ARROW. The corre-
sponding magnifications for the region m are also shown
in Fig. 3(b). It is observed that the fundamental mode vanishes
at positions and (i.e., nodes). This is due to the destructive
interference between the outgoing and incoming fields at these
locations. Constructive interference of both incoming and out-
going fields is also occurred at the position so that an antinode
is formed. On the other hand, the nodes of the first-order mode
deviate from the positions and , while the antinode moves
into the second cladding layer. Hence, only the fundamental
leaky mode satisfies the antiresonant condition, and the corre-
sponding radiation loss is minimized.

Fig. 4(a) plots the intensity profile of the fundamental and
first-order leaky modes estimated from the planar approxima-
tion. The corresponding magnifications for the region m
are also shown in Fig. 4(b). In the calculation, the optimum
dimensions of the cylindrical ARROW are obtained from the
planar approximation with and

m. The profile of the fundamental leaky mode esti-
mated from the planar approximation is similar to that obtained
from our more accurate calculation. As a result, the radiation
loss computed from both methods can be quite close to each
other. However, it is observed that the profiles of the first-order
leaky mode obtained from both methods are quite different. The
magnitude of the antinode of the first-order leaky mode inside
the second cladding layer calculated from the planar approxi-
mation is much higher than that obtained from our field transfer

(12)
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(a)

(b)

Fig. 3. (a) Intensity profiles of fundamental and first-order leaky modes
calculated by transfer matrix method. (b) Magnified view of (a).

(a)

(b)

Fig. 4. (a) Intensity profiles of fundamental and first-order leaky modes
calculated by planar approximation. (b) Magnified view of (a).

matrix method. This is because the envelope of the first-order
leaky mode calculated from the planar approximation is almost
independent on (i.e., properties of cosine/sine functions) but

that obtained from our field-transfer matrix method is inversely
proportional to the square root of [i.e., properties of Bessel
functions, see (7)]. As the radiation loss of the first-order leaky
mode is proportional to the magnitude of the field distribution
inside the second cladding layer, the planar approximation will
overestimate the radiation loss of the first-order mode as well as
the radiation loss margin of the cylindrical ARROW. The cal-
culation of first-order leaky mode given in [6, Fig. 4(b)] shows
that the magnitudes of the antinodes inside the core and second
cladding layer are close to each other. Hence, it is believed that
the planar approximation was used in their design of cylindrical
ARROW.

C. Design Rule of Cylindrical ARROW Using Field-Transfer
Matrix

According to planar approximation, the thickness of the
second cladding layer should be equal to the
radius of the core region [6]. This is because
the lateral wavelength of the leaky modes should be uni-
form throughout the ARROW structure (i.e., properties of
cosine/sine functions) in order to obtain antiresonant condition
[see Fig. 4(a)]. Similar antiresonant condition is also observed
in our calculation using field-transfer matrix method, but
the lateral wavelength of the leaky modes inside the second
cladding layer is shorter than that inside the core region [see
Fig. 3(a)]. This is again due to the nonuniform periodicity of
Bessel function, as the period of the standing wave within the
core and second cladding layers is equal to 2.403 and 2,
respectively. These correspond to the separation between the
center and first root of (i.e., between and ) as well as
the separation between the second root of and third root

(i.e., between and ). Hence, if m, then
should be equal to m,

which is close to our more exact calculation and is much shorter
than that obtained from the planar approximation. It must be
noted that the error arising from the estimation of using
planar approximation will not reduce with the increase of .
This is because the ratio between the lateral wavelength inside
the core and second cladding layer of the cylindrical ARROW
is independent of the diameter of the core region, so that the
ratio is a constant.

Hence, a new design rule of cylindrical ARROW, which
involves a three-step design process, is proposed. The
three-step design process consists of 1) a rough estima-
tion of waveguide dimensions (using the approximation

), 2) a better iterative approximation method
[using or (2)] and 3) an iterative
process incorporated with field-transfer matrix. The reasons
to go through these lengthy design procedures is because in
cylindrical structure, the analytical expression for optimum
thickness of cladding layers cannot be deduced explicitly [3].
Apart from this, the convergent efficiency of the field-transfer
matrix is dependent on the initial guess of and the wave-
guide dimensions.

If only fundamental leaky mode is considered in the analysis,
the three-step design process can be written as follows.

First, it can be shown that due to the axis-symmetric
properties of the cylindrical ARROW, the corresponding
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Fig. 5. A three-step design process for cylindrical ARROW. The design
process requires the free-space wavelength �, core diameter d , and refractive
indexes of the four layers (n ; n ; n ; n ) of the ARROW as the inputs. If the
radiation loss of the fundamental leaky mode is high, Step 3) will be executed
using the field-transfer matrix to solve for the exact value of n .

field profile of the fundamental leaky mode can be roughly
approximated by the Bessel function of the first kind, that
is, . Using the fact that the optimum dimensions
of the cylindrical ARROW are obtained when the antinode
(nodes) of the fundamental leaky mode is (are) located at

( and ), the analytical expressions for the optimum
dimensions of the ARROW structure can be deduced (see also
Fig. 3). The of the cylindrical ARROW can be estimated
by recognizing the position of node at , which corresponds to
the first root of . As a result, can be approximated
by , where . Again,
by recognizing the position of antinodes at , the thickness
of the first cladding layer can be obtained from
the second root of (or at ). Hence, can
be expressed as . It is noted from
Fig. 3 that the field intensity has another node at , which
corresponds to the third root of . Therefore, the second
cladding layer thickness can be written as

.
Second, Fig. 5 shows the proposed iteration process used to

deduce and of the cylindrical ARROW. In this calculation,
(2) is used to describe the lateral field profiles of the leaky modes
and the approximated values of and can be obtained from
Step 1) as the initial guess of this iteration process. The purpose
of this iteration process is to find a better approximation to and

than that obtained from Step 1) so that the antinode (node)
of the leaky modes calculated from (2) can be accurately posi-
tioned at .

For low-loss cylindrical ARROW, the values of and
calculated by the above iteration process can be quite close to
the optimum dimensions, so the use of transfer matrix method
can be bypassed. However, if the radiation losses of the leaky

Fig. 6. Radiation losses versus thickness of the first cladding layer s of the
S-ARROW. Insert is the refractive index profile of S-ARROW.

modes are large (e.g., ARROWs operating at long wavelength),
the assumption will not be satisfied anymore.
Therefore, an additional step [i.e., Step 3) as shown below]
is required.

Third, the modified iteration process is also illustrated in
Fig. 5. In the process, the exact value of is calculated
by (10). The convergent efficiency of the iteration process
can be maximized provided that the values of , and
obtained from Step 2) are used as the initial guess. However,
the magnitudes of the fine-tuning steps and should be
small enough (i.e., 10 m) to maintain convergence of the
iteration process if the radiation losses of the leaky modes are
large.

From above, the values of and can be optimized for a
given value of .

III. NUMERICAL RESULTS

In the following analysis, the modal characteristics of
S-ARROW and ARROW operating at long wavelength (i.e.,
1.55 m) are studied. It is suggested that the optimum value
of can be estimated by minimizing the ratio between
the radiation loss of fundamental leaky mode and radiation
loss margin of the waveguides. It is also shown that these
conventional ARROW structures may not be suitable to realize
long-wavelength VCSELs due to the high radiation loss of the
fundamental leaky mode. Therefore, it is proposed to introduce
an extra high index cladding layer to S-ARROW in order to
reduce the radiation loss and to increase the radiation loss
margin.

A. Modal Characteristics of Cylindrical S-ARROW and
ARROW

Fig. 6 plots the radiation losses versus the thickness of the first
cladding layer for the four leaky modes (which have the lowest
radiation losses) of S-ARROW with m. It
is observed that the shapes of the four curves are similar ex-
cept the values of the radiation losses are different. The fun-
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Fig. 7. Intensity profile of the fundamental leaky modes obtained from Fig. 7
with s set to (a) 2.025 �m, (b) 2.575 �m, (c) 2.6 �m, and (d) 3.325 �m.

Fig. 8. (a) Radiation losses of fundamental and first-order leaky mode versus
d , (b) the thickness of the first cladding layers s versus d , and (c) radiation
loss margin versus d .

damental mode has the lowest radiation loss because it has the
largest (longest) value of (lateral wavelength). Therefore,
the optimum value of for the fundamental leaky mode is the
longest. The intensity profiles of the fundamental leaky mode
at different values of are shown in Fig. 7. It is observed that
the maximum (minimum) radiation loss is due to constructive
(destructive) interference or antinode (node) at the interface .

Fig. 8 plots (a) the radiation losses of the fundamental and
first-order leaky modes versus , (b) the optimum thickness
of first cladding layer versus , and (c) the radiation loss
margin versus . In the calculation, the value of is optimized
for the fundamental leaky mode. It is observed that the radiation
losses and radiation loss margin are reduced with the increase in

. On the other hand, the optimum value of increases along
with so that the antiresonant condition of the fundamental
leaky mode can be satisfied. It is noted that larger reduces

Fig. 9. Radiation losses versus thickness of the second cladding layer d of
the ARROW. Insert is the refractive index profile of ARROW.

the radiation loss of the fundamental leaky mode, but with the
expense of decreasing the high radiation loss margin. Therefore,
it is necessary to deduce an optimum value of in order to
maintain the balance between the radiation loss and radiation
loss margin (i.e., to minimize the ratio between the radiation
loss and radiation loss margin). As a result, the waveguide can
have small enough radiation loss (large enough radiation loss
margin) to minimize the threshold current (suppress the higher
order leaky modes) in VCSELs. As shown in Fig. 8(a) and (c),
the optimum value of can be obtained from the interception
of the interpolations from two straight lines tangential to the
curves at m and m. It is found that the
optimum value of is around 10 m, and the corresponding
values of radiation loss and radiation loss margin are around 6
and 15 cm , respectively.

Fig. 9 plots the radiation losses of the four leaky modes versus
the thickness of the second cladding layer of ARROW. In
the calculation, is again set to 4 m and is opti-
mized for the antiresonant condition of the leaky modes. Fig. 10
shows the intensity profiles of ARROW with different values
of . It is observed that the increase in radiation loss is due
to the increase in the magnitude of antinode inside the second
cladding layer (i.e., as indicated by an arrow). The modal char-
acteristics of ARROW with different values of are also in-
vestigated. Fig. 11 plots (a) the radiation losses of the funda-
mental and first-order leaky modes versus , (b) the optimum
thickness of first cladding layer versus , (c) the optimum
thickness of the third cladding layer versus , and (d) the
radiation loss margin versus . From Fig. 11(a) and (d), it
is found that the optimum value of is about 10 m. Fur-
thermore, the corresponding radiation loss and radiation loss
margin are found to be 1.5 and 14 cm , respectively. Hence,
it is shown that ARROW has better threshold performance than
that of S-ARROW because the radiation loss of the fundamental
leaky mode of ARROW is much smaller than that of S-ARROW
but the radiation loss margin of ARROW and S-ARROW is sim-
ilar at m.
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Fig. 10. Intensity profiles of the fundamental leaky mode with d set to
(a) 2.875 �m and (b) 5.8 �m. Intensity profiles of the first-order leaky modes
with d set to (c) 1.8 �m and (d) 3.7 �m.

Fig. 11. (a) The radiation loss of fundamental and first-order mode of ARROW
plotted against core diameter d . (b) The thickness of the high-index cladding
layers s plotted against d . (c) The thickness of second cladding layer d , versus
d . (d) Radiation loss margin versus d .

From above analysis, it is noted that ARROW may be a
good choice to realize long-wavelength VCSELs. However,
for ARROW with m, the corresponding radiation
loss of the fundamental leaky mode is 1.5 cm , which is
not small enough to realize high-performance VCSELs [6].
Although further increase in can reduce the radiation loss
of the fundamental leaky mode, the radiation loss margin will
also decrease. Therefore, an extra cladding layer is proposed
to reduce (maintain) the radiation loss (radiation loss margin)
of the S-ARROW and ARROW. In the following paragraphs,
the modal characteristics of S-ARROW and ARROW with an
extra high index cladding layer are investigated.

Fig. 12. Plots of radiation loss of fundamental modes (solid line) and radiation
loss margin (dashed line) of double S-ARROW versus d . Insert is the refractive
index profile of the double S-ARROW.

B. Modal Characteristics of Cylindrical Double S-ARROW
and Double-ARROW

Fig. 12 shows the schematic of double S-ARROW. In the de-
sign of double S-ARROW, the thickness of the third cladding
layer has to be taken into the iteration process. In order to
perform Step 1) of the design rule, the analytical expression of

has to be deduced for the calculation process. Using the ap-
proximation can be expressed as

(13)

Using (13), Steps 2) and 3) of the three-step design process
can also be performed and the optimum thickness of can
be evaluated iteratively. In the analysis of the radiation losses
of the double S-ARROW versus , the values of and
are optimized for the fundamental leaky mode to achieve
antiresonant condition. The antiresonant condition established
within the first cladding layer is also maintained inside the
third cladding layer of the double S-ARROW. Hence, the plots
of and versus are not repeated. Fig. 12 also shows
the variation of radiation loss (of fundamental leaky mode)
and radiation loss margin versus . It is observed that the
optimum value of is around 10 m. The corresponding
radiation loss and radiation loss margin are found to be 0.4 and
5.5 cm , respectively. It is noted that the fundamental leaky
mode of double S-ARROW has much lower radiation loss than
that of ARROW-type structures as described in Section III-A
and the value of radiation loss margin is still large enough to
discriminate higher order leaky modes in VCSELs. Please be
noted that in the design of 0.98- m ARROW-type VCSELs
with m, the required optimum radiation loss and
radiation loss margin are 1 and 5 cm , respectively [6].

Fig. 13 shows the schematic of double ARROW. In the cal-
culation, the thickness of the third cladding layer , as well as
the thickness of the fourth cladding layer , of double ARROW
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Fig. 13. Plots of radiation loss of fundamental modes (solid line) and radiation
loss margin (dashed line) of double ARROW versus d . Insert is the refractive
index profile of the double ARROW.

has to be taken in the iteration process. It can be shown that the
approximated expression of can be written as

(14)

Using (14), the optimum thickness of can be evaluated iter-
atively. In the study of double ARROW, the values of ,
and are optimized for the fundamental leaky mode to achieve
antiresonant condition. Hence, antiresonant condition of the
fundamental leaky mode can be enhanced by the extra cladding
layer, so that the radiation loss of double-ARROW is lower
than that of double S-ARROW. From Fig. 13, it can be shown
that the optimum of double-ARROW is again 10 m and
the corresponding radiation loss and radiation loss margin are
found to be 0.04 and 3.5 cm , respectively. Hence, it is proven
that extra cladding layer in ARROW can significantly reduce
the radiation loss of the fundamental leaky mode to a very low
value.

IV. DISCUSSION AND CONCLUSION

In the analysis of cylindrical ARROW [6], it is believed that
the planar approximation can be used to estimate the optimum
thickness of the cladding layers. The argument is that if the
ARROW structures have large , the corresponding leaky
modes can be approximately described by cosine and sine
functions. This assumption is valid as far as the field profile
of leaky modes far away from the core region are concerned
and this is the reason for us to use (7) to approximate optical
field in the cylindrical ARROW at . However, using
planar approximation to estimate the optimum dimensions

of cylindrical ARROW is still not appropriate. The reasons
have been explained in Section II-B and -C. This is because
1) the leaky modes have nonuniform lateral wavelength and
2) the envelope of the leaky modes reduces along the lateral
direction. On the other hand, the leaky modes describe by
planar approximation assumed that the lateral wavelengths
between the core and second cladding layers are equal in order
to satisfy the antiresonant condition. In addition, the magnitude
of antinodes of the first-order leaky mode inside the second
cladding layer is close to that inside the core region. Therefore,
the use of planar approximation will overestimate the radiation
loss margin of the cylindrical ARROW and the overestimation
cannot be reduced by the increase of core diameter.

In conclusion, a simple field transfer matrix is developed to
analyze the modal characteristics of cylindrical ARROW. A new
design rule is proposed to optimize the dimension of the cylin-
drical ARROW. Hence, it is found that the double S-ARROW
with m is the best choice to realize long-wavelength
VCSELs. This is because the corresponding radiation loss (ra-
diation loss margin) is low (high) enough to minimize threshold
current (suppress higher order leaky modes) of VCSELs. In
addition, the waveguide structure of double S-ARROW is less
complicated than that of double ARROW.
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